
10. OPTIMIZATION AND DESIGN 

Abstract — Optimal design with finite element model is often 
expensive in terms of computation time. The space-mapping 
technique allows benefiting both the rapidity of the analytical 
model and the accuracy of the finite element model. In this paper, 
based on a surrogate model, a 2D FE model and a 3D FE model, 
a three levels adapted output space-mapping technique is 
proposed. The results show that the proposed algorithm allows 
saving of computation time compared to the classical two levels 
output space-mapping. 

I. INTRODUCTION 
For design and analysis of a linear electrical motor, an 

analytical solution of electrical and magnetic fields is difficult 
to achieve, due to the end and edge effects, but also the non-
linearity of the phenomena. The numerical methods such as 
finite element method allow overcoming these difficulties [1]. 
However optimal design of an electrical device using finite 
element models (FEM) is complex and time consuming. The 
high computation time, numerical noise and the mesh quality 
of the FEM make it difficult to use in an optimization process.  

Several variants of space-mapping technique [2] are 
recently being used in solving optimization problems of 
electromagnetic devices [3], which allow benefiting the 
rapidity of the analytical model and the accuracy of the FEM 
by aligning the both models. Space-mapping technique 
converges faster by avoiding the use of the FEM during the 
optimization process.  

In this paper, three linear induction motor (LIM) models 
with different accuracies (coarse, medium and fine) are 
presented and the optimization problem is introduced. 
Secondly, the three levels adapted output space-mapping 
technique (OSM) is described and applied to the three models. 
Thirdly, the method efficiency is analyzed and compared to 
the classical two levels OSM. 

II. OPTIMIZATION PROBLEM 

A. Optimization Problem Formulation 
The device to be studied is a double-sided LIM. It consists 

of two symmetrical primaries placed face-to-face and a 
secondary placed between the two primaries achieved by an 
aluminum plate. The primaries have three concentrated 
windings and are fed using a three-phase AC voltage. Fig. 1 
shows the 3D FE model of the LIM. 

A single objective optimization problem is set up for the 
optimal sizing of the double-sided LIM. It consists of four 
design variables, and among them there are three geometrical 
variables: 1tw , 2tw , 3tw for the width of the motor teeth, and 
U  for the fed voltage of the primary. The geometrical design 
variables are shown on Fig. 1. There are three constraints in 
this problem. The mass and the losses of the device should be 
respectively less than 2kg and 100W. The non-balance of the 

currents should be less than 10%. The objective function is to 
maximize the thrust force provided by the slip field and the 
induced current in the aluminum plate. 
 

Fig. 1. 3D FEM of the LIM with two primaries and one aluminum plate 

The optimization problem of the double-sided LIM is 
expressed in (1): 
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B. Coarse, Medium, and Fine Models 

The behavior of the double-sided LIM is studied by a 
surrogate (coarse) model, a 2D FEM (medium model) and a 
3D FEM (fine model). 

TABLE I - ERROR OF MODELS 
Model 
type 

ΔLosses 
(%) 

ΔF 
(%) 

ΔEq 
(%) 

Comp. time 
(s) 

Coarse  37.55 37.79 64.8 0.2 
Medium  33.11 31.92 51.53 311 

Fine  28.73 8.44 47.60 5400 

Table I presents the error of the three models compared to 
the measurement and computing time of each model for the 
initial solution. 

III. THREE LEVELS ADAPTED OUTPUT SPACE-MAPPING  

Output space-mapping technique is investigated in order to 
obtain satisfactory results with a minimum number of 
computationally expensive 3D FEM evaluations [4]-[5]. It 
aims to use both the coarse and fine models to reduce the 
computation time and increase the accuracy of the obtained 
solution. The problem of the two levels OSM technique is its 
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computing time when one 3D FEM evaluation is 
computationally expensive and the iterations number is 
important. To overcome this problem, a model with a medium 
accuracy is added between the coarse and fine models within 
the OSM algorithm. The medium model has rather good 
accuracy and smaller computing time compared to the fine 
model. 

In general, the coarse computationally cheaper model is 
denoted by mzc ℜ∈)(  with nZz ℜ⊂∈ , the fine 

computationally expensive model is denoted by mxf ℜ∈)(  

with nXx ℜ⊂∈ , and the medium-accuracy model is 
denoted by mxm ℜ∈)( . In this case, the inputs of the three 

models are the same, i.e. nxz ℜ⊂≡ . The nonlinear 
constraints of the coarse, medium, and fine models are )(xg c , 

)(xg m and )(xg f , respectively. The strategy of the three 
levels OSM consists initially of aligning the coarse model and 
the medium model by the corrective coefficients mℜ⊂Θ∈θ . 
These coefficients are updated at each iteration to minimize 
the discrepancy between both models. 
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These coefficients are introduced into the coarse model to 
compute a new solution jx  for the next iteration. β is used to 
correct the medium model as explained later. 
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where 
my ℜ∈  denotes a vector of design specification and 

can be zeros in the case of minimization. The space-mapping 
between the coarse and medium models stops when (5) is 
checked, 
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where ε  is the required accuracy and jβ  is constant during 
this part of the algorithm. The second part of the algorithm 
consists of calculating the outputs of the fine model with jx  
and aligning the medium model with the fine one using a 
vector of correctors β as:  
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The three levels OSM algorithm stops when the 
discrepancy between the corrected medium model and the fine 
model is small enough: 
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To summarize, the three levels OSM algorithm carries out 
the following main steps: 

0. Initialization Ij oo == θβ ,,0  
1. Optimization with the coarse corrected model: find the 

solution of (4), i.e. jx  

2. Evaluation of jx with the medium corrected model, 

i.e. compute ),( jjxm β and ),( jjm xg β  
3. Computation of the coarse model correctors for the 

next iteration with (3), i.e. 1+jθ  and jj ββ =+1  
4. Until (5): 1+= jj , go to step 1. 
5. Evaluation of jx with the fine model, i.e. compute 

)( jxf  and )( jf xg  
6. Computation of the medium model correctors for the 

next iteration with (6) , i.e. 1+jβ  and jj θθ =+1  
7. Until (8), 1+= jj , go to step 1. 
8. Stop 

IV. RESULTS AND CONCLUSION 
Both two and three levels OSM algorithms converge to the 

same solution. However, an important decrease of 
computation time is obtained thanks to the addition of an 
intermediate model. Table I shows that the number of 3D 
FEM evaluations is 4 times smaller and the overall 
optimization time, including the medium model evaluations, is 
3 times smaller compared to the classical two levels OSM.  

TABLE I - OSM RESULTS 

OSM 3D FEM 
evaluations 

medium model 
evaluations time (s) 

Three levels 2 10 15321 
Two levels 8 - 43213 
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